Spacing between two successive nodes in a standing wave on a string is $x$ . If frequency of the standing wave is kept unchanged but tension in the string is doubled, then new spacing between successive nodes will become
$x/\sqrt 2 $
$\sqrt 2 x$
$x/2$
$2x$
$Assertion :$ Two waves moving in a uniform string having uniform tension cannot have different velocities.
$Reason :$ Elastic and inertial properties of string are same for all waves in same string. Moreover speed of wave in a string depends on its elastic and inertial properties only.
A string of length $1 \mathrm{~m}$ and mass $2 \times 10^{-5} \mathrm{~kg}$ is under tension $\mathrm{T}$. when the string vibrates, two successive harmonics are found to occur at frequencies $750 \mathrm{~Hz}$ and $1000 \mathrm{~Hz}$. The value of tension $\mathrm{T}$ is. . . . . . .Newton.
Which of the following statements is incorrect during propagation of a plane progressive mechanical wave ?
One end of a long string of linear mass density $8.0 \times 10^{-3}\;kg m ^{-1}$ is connected to an electrically driven tuning fork of frequency $256\; Hz$. The other end passes over a pulley and is tied to a pan containing a mass of $90 \;kg$. The pulley end absorbs all the incoming energy so that reflected waves at this end have negligible amplitude. At $t=0,$ the left end (fork end) of the string $x=0$ has zero transverse displacement $(y=0)$ and is moving along positive $y$ -direction. The amplitude of the wave is $5.0\; cm .$ Write down the transverse displacement $y$ as function of $x$ and $t$ that describes the wave on the string.
steel wire $0.72\; m$ long has a mass of $5.0 \times 10^{-3}\; kg .$ If the wire is under a tension of $60\; N ,$ what is the speed (in $m/s$) of transverse waves on the wire?